
Abstract The series expansion formulae are derived for
the overlap integrals with arbitrary integer n and nonin-
teger n* Slater-type orbitals (ISTOs and NISTOs) in
terms of a product of well-known auxiliary functions Aσ
and Bk. The series becomes an ordinary closed expres-
sion when both principal quantum numbers n* and n′* of
orbitals are integer n*=n and n′*=n′. These formulae are
especially useful for the calculation of overlap integrals
for large quantum numbers. Accuracy of the results is
satisfactory for values of integer and noninteger quantum
numbers up to n=n′=60, n*=n′*<33 and for arbitrary val-
ues of screening constants of orbitals and internuclear
distances.
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Introduction

It is well known that multicenter molecular integrals are
evaluated by the use of two types of orbitals: Gaussian-
type orbitals (GTOs) and Slater-type orbitals (STOs).
GTOs do not represent important properties of the elec-
tronic wavefunction sufficiently, namely, the cusps at the
nuclei [1] and exponential decay at large distances. [2]
For problems in which the long part of the wavefunction
or its behavior in the neighborhood of the nuclei is im-
portant, it is desirable to use STOs, which describe the
physical situation more accurately than GTOs. It is well
known that noninteger STOs (NISTOs) provide a simple

but more flexible basis for molecular calculations than
integer STOs (ISTOs). [3] The main problem for the use
of a NISTO basis in molecular calculations arises in the
evaluation of the multicenter integrals.

In [4] the multicenter multielectron molecular inte-
grals over NISTOs with an arbitrary s-electron opera-
tor F(s) (s=1, 2, 3,...) appearing in the Hartree–Fock–
Roothaan approximation and also in the Hyllaraas cor-
related wave functions method were expressed in terms
of overlap integrals over NISTOs for the calculation of
which we presented the analytical formulae through the
overlap integrals with ISTOs. The overlap integrals
with NISTOs can also be evaluated by the use of auxil-
iary functions Aσ and Bk. It is well known that the aux-
iliary function method in which elliptical coordinates
are used has been studied extensively and employed in
the calculation of overlap integrals over ISTOs (see,
e.g. [5, 6, 7, 8] and the bibliography quoted in these pa-
pers). In this work, using the auxiliary function method,
a unified treatment is described for the overlap inte-
grals over ISTOs and NISTOs with respect to the mo-
lecular coordinate system (non-aligned coordinate sys-
tems):

(1)

where

The quantities R, θ and ϕ are the spherical-polar coordi-
nates of radius vector ; and

are normalized complex or real STOs on
the nuclei a and b, respectively:

Here n* is an integer (n*=n) or noninteger (n*≠n) princi-
pal quantum number, Slm is a complex or real spherical
harmonic and Γ(x) is the gamma function. In the case of
integer values of n*, it is necessary to replace the func-
tion Γ(2n*+1) by the expression Γ(2n*+1)=(2n)!.
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Here the quantities Fm(n,n′) are the generalized binomial
coefficients determined by the following relations:

(11)

(12)

where . Here Fm(n)=
Fm(n,0)=n!/(m!(n–m)!) and Fm(n,n′) are the usual and
generalized binomial coefficients. Generalized binomial
coefficients have the following recursive relations and
symmetry properties:

(13)

(14)

(15)

(16)

and

(17)

(18)

Now we can move on to the calculation of overlap inte-
grals relative to unaligned coordinate systems. For this
purpose, we use Eqs. (5) and (17) of [10] for the rotation
of two-center overlap integrals in the following form:

(19)

where Sn*lλ,n′*l′λ are the overlap integrals with respect to
aligned coordinate systems determined by Eq. (6). The
rotation coefficients Tλ in Eq. (19) are determined by the
following relationships:

● for complex STOs

(20)

● for real STOs

(21)

For θ=ϕ=0 (aligned coordinate systems) the overlap
integrals are defined by

(3)

where 

Expressions in terms of auxiliary functions

In order to derive the expression for Eq. (3) in terms of
auxiliary functions we use elliptical coordinates. Then
integrating over the azimuthal angle ϕ=ϕa=ϕb we obtain:

(4)

where Plλ and Pl′λ are normalized associated Legendre
polynomials and

(5)

Now we use the expansion formulae for the product of
two normalized associated Legendre polynomials both
with different centers in Eq. (4). [9] Then it is easy to ob-
tain for the overlap integrals over STOs with respect to
aligned coordinate systems the following relation:

(6)

where the quantity Qq is the auxiliary function defined
by

(7)

See [10] for the exact definition of coefficients . The
relationship for these coefficients in terms of binomial
coefficients was given in [11]:

(8)

(9)

(10)
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where γ=|m|, γ′=|m′| and Mi=εmm′|iγ+γ′|. In Eqs. (20) and
(21) the symbol ∑(2) indicates that the summation is to
be performed in steps of two. For γ=γ′ and εmm′=–1 terms
with a negative value of index i (i=–1) contained in Eq.
(21) should be equated to zero. We notice that the
symbol εmm′ in Eq. (21) may have the values ±1 and is
determined by the product of the signs m and m′ (the
sign of zero is regarded as positive). The quantities C in
Eqs. (20) and (21) are the Clebsch–Cordan coefficients
in the case of our phases ( , see [11]):

(22)

where (l1l2m1m2/l1l2LM) is a Clebsch–Cordan coefficient
in Condon–Shortley phases.

For a linear molecule it is convenient to take the polar
axes along the line joining the centers a and b. Then Eqs.
(20) and (21) become

(23)

With the aid of Eq. (19) any overlap integral can be cal-
culated in the molecular coordinate system from the
overlap integrals with respect to aligned coordinate sys-
tems, which are expressed in terms of auxiliary functions
Qq by the relation (6). Thus, the computation of overlap
integrals with STOs is reduced to the calculation of the
auxiliary functions .

Evaluation of auxiliary functions

For the evaluation of auxiliary functions Qq we use the
following binomial relationship:

(24)

where F0(n*)=1 and

(25)

(26)

We notice that for m>n the binomial coefficient Fm(n)
in Eq. (24) is zero, i.e., in the case of integer n* terms
with negative factorials do not contribute to the sum-
mation.

Taking into account Eq. (24) it is easy to show that

(27)

where n is an integer part of principal quantum number
n* and

(28)

The indices N′ in Eqs. (27) and (28) arise from the ex-
pansion of (µ–ν)n′*. We notice that the quantities Fm(n,n′)
are expansion coefficients in the identity (11).

Substituting Eq. (27) into Eq. (7) we finally obtain for
auxiliary functions Qq the following expressions:

● for noninteger n* and n′*

(29)

● for integer n* and n′*

(30)

Here Aσ and Bk are the well-known auxiliary functions
defined by

(31)

(32)

where the index σ takes positive and negative integer
and noninteger values; k is a positive integer number.
The auxiliary functions Aσ(p) and Bk(pt) satisfy the fol-
lowing recursive relations:

(33)

(34)

(35)

For integer values of the index σ in the auxiliary func-
tion Aσ(p) is calculated from the recursive relation (33)
which is stable for all values of σ and p. In the case of
noninteger σ, the recursive relation (33) is only stable
for small values of the parameter p. For noninteger val-
ues of σ, we have implemented an efficient procedure
based on the use of the expression for the function Aσ(p)
through the incomplete gamma function [12]

(36)

where

(37)
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For large values of parameter p we have used the algo-
rithm given in [13] for the calculation of the incomplete
gamma function. In our computational algorithm we
used the routines GSER and GCF, which are available
from the Fortran numerical recipes library. [14]

The simplest way of evaluating the integral Bk(pt) is
through its recurrence relation (34). Unfortunately, the
recursive relation (34) for auxiliary functions Bk(pt) be-
comes unstable when . The absolute error
made in the initial value B0(pt) in Eq. (34) grows with a
factor in each step. Since Bk(pt) values have al-
most the same order of magnitude for all k, the relative
error grows in each step by a factor . In [8] this dif-
ficulty was overcome by using the recursive relation
downward for . Therefore, in this study, for

the calculation of auxiliary functions Bk(pt) is
performed by the use of the approach described in [8].

Using the identity [15]

one can determine the accuracy of computer results for
the overlap integrals which are obtained from Eqs. (6)
and (19). Here the coefficients Alλ and Blλ are defined by
the relations:

(39)

where λ=|m| and λ′=|m′|.

Numerical results and discussion

As can be seen from Eqs. (6), (19) and (29), the overlap
integrals with STOs are expressed in terms of auxiliary
functions Aσ(p) and Bk(pt). The auxiliary functions occur-
ring in the overlap integrals can be calculated by making
use of computer programs presented in [8] and [14]. With
the aid of identity (38) one can determine the accuracy of
computer results that are obtained from Eqs. (6) and (19).

The coefficients Fm(n*,n′*) and are stored in the
memory of computer and used both in Eq. (6) and in the
calculation of coefficients, respectively. In
order to put these coefficients into or to get them back
from the memory, the positions of certain coefficients
Fm(n*,n′*) and are determined by the following rela-
tions, respectively:

(40)

(41)

(38)

Table 1 The values of overlap integrals over NSTOs obtained in the molecular coordinate system (in a.u.)

n* l m n′* l′ m′ p t θ ϕ Overlap integrals [braceex∆ CPU [17]
f[braceex (ms)

7.3 4 4 7.3 4 4 2 0.5 0 0 1.01734314959344E–01 14 12.6 1.101734314960E–01
3.8 0 0 5.5 0 0 2.31 11/33 0 0 2.90802046505438E–01 15 2.3 2.90802069369E–01
5.7 1 1 3.8 1 1 2.38 4/17 0 0 8.66889506331727E–01 16 3.1 8.66889476942E–01
6.4 1 0 6.4 0 0 5.1 –8/17 0 0 3.12099122165129E–01 14 2.5 3.12095409105E–01
7.7 4 4 6.6 4 4 6 –0.25 0 0 2.34831461718284E–01 13 12.5 2.34831448531E–01
4.1 2 2 3.7 2 2 10.25 5/41 0 0 2.93541966880792E–02 14 4.3 2.93217486171E–02

10.3 0 0 10.3 9 0 5.25 3/7 0 0 1.52927430062972E–05 12 7.7 1.52926483369E–05
3.6 2 1 2 1 1 0.8 0.3 72 180 6.49621736449485E–02 16 1.5
4.5 3 2 3.2 2 2 12 0.1 0 0 1.69270199963546E–02 15 5.2
5.38 4 2 4.2 3 2 0.08 0.4 144 60 –9.63888734685283E–03 15 8.3
6.8 4 3 4.5 4 3 5 0.6 0 0 –2.35186756280448E–02 15 11.1
6.3 5 4 5.5 4 4 15 0.1 120 240 1.85610753353492E–02 14 12.3
7.6 3 2 7.2 4 3 25 0.01 150 300 −4.85856478885724E–04 13 8.3
7.9 5 4 7.7 6 4 18 0.01 45 45 5.01350546208193E–06 14 13.1
7.2 6 6 7.8 6 6 8 0.02 0 0 1.80791756875938E–01 13 16.5
8.7 4 4 8.8 5 4 0.008 0.4 135 90 3.18346195817754E–04 16 21.1
8.7 4 4 8.8 5 4 0.008 0.4 0 0 –4.50210194347972E–04 17 18.2
8.7 7 7 8.8 7 7 0.002 0.7 180 225 1.80816109800210E–03 14 33.6
9.5 7 3 9.8 7 3 0.002 0.7 0 0 8.27658561382520E–04 15 25.6
9.6 8 6 9.2 8 5 0.02 0.1 135 45 1.47673938614477E–01 14 36.7

11.6 8 7 7.4 5 4 0.03 0.2 135 180 5.49932834618303E–08 16 34.4
12.4 10 9 10.2 9 9 3.3 0.02 20 270 1.62396868246811E–03 15 108.3
13.2 7 6 11.5 7 6 0.06 0.1 0 0 9.84040136524412E–01 15 94.8
32.5 10 8 30.2 10 8 0.05 0.3 100 180 5.51472012714084E–02 10 185.3
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where

(42)

(43)

(44)

Here, n1 and n2 are the integer parts of quantum numbers
n* and n′*, respectively. We notice that the symmetry
properties are taken into account in storing Fm(n*,n′*).
Computation time of overlap integrals is reduced by us-
ing Eqs. (40), (41), (42), (43) and (44) and the memory
of the computer.

The results of calculations on a PENTIUM 233 com-
puter (using Turbo Pascal 7.0 language) for various val-
ues of parameters are represented in Tables 1 and 2 ob-
tained in the molecular coordinate system. The values of
overlap integrals, the number of correct decimal figures
[braceex∆f[braceex and the CPU time in milliseconds
are given in these tables. As can be seen from the tables,
in all of the calculations for 0<p and –1<t<1 the accura-
cy and CPU time of computer results are satisfactory. 

In the literature, as far as we know, there are no stud-
ies on the evaluation of overlap integrals with NISTOs,
with which to compare our results, except for the studies
of [16] and [17]. The results of calculations had been
checked with results of [17].

We notice that the algorithm presented in this work is
of a completely general type and can be used to calculate
any overlap integral for arbitrary values of integer and
noninteger principal quantum numbers, screening con-
stants and location of STOs, and internuclear distances.
Therefore, this algorithm provides a rapid and sufficient-
ly accurate method for the calculation of multicenter
multielectron molecular integrals in the Hartree–
Fock–Roothaan and Hyllaraas approximations based on
the series expansion formulae for STOs obtained in [4].

Supporting information

The program is available from the authors on request.

References

1. Kato T (1957) Commun Pure Appl Math 10:151–160
2. Agmon S (1982) Lectures on exponential decay of solutions of

second-order elliptic equations: bound on eigenfunctions of 
N-body Schrodinger operators. Princeton University Press,
Princeton, pp 24–87

3. Silverstone HJ (1966) J Chem Phys 45:4337–4345
4. Guseinov II (2002) Int J Quantum Chem 90:114-118
5. Weatherford CA, Jones HW (1982) International Conference

on ETO multicenter integrals. Reidel, Dordrecht, pp 1–65
6. Bouferguene A, Fares M, Hoggan PE (1996) Int J Quantum

Chem 57:801–810
7. Rico JF, Lopez R, Aguado A, Ema I, Ramirez G (1998)

J Comput Chem 19:1284–1293
8. Guseinov II, Özmen A, Atav Ü, Yüksel H (1998) Int J Quan-

tum Chem 67:199–204
9. Guseinov II (1970) J Phys B 3:1399–1412

10. Guseinov II (1985) Phys Rev A 32:1864–1866
11. Guseinov II (1995) J Mol Struct (Theochem) 336:17–20
12. Gradshteyn IS, Ryzhik IM (1980) Tables of integrals, sums,

series and products, 4th edn. Academic Press, New York,
pp 300–320

13. Abramowitz M, Stegun IA (1972) Handbook of mathematical
functions, 3rd edn. Dover Publications, New York, pp 253–
265

14. Press WH, Flannery BP, Teukosky SA, Vatterling WT (1989)
Numerical recipes (Fortran version). Cambridge University
Press, Cambridge

15. Guseinov II, Mamedov BA (1999) J Mol Struct (Theochem)
465:1–6

16. Mekelleche SM, Baba-Ahmed A (1997) Int J Quant Chem
63:843–852

17. Mekelleche SM, Baba-Ahmed A (2000) Theor Chem Acc
103:463–468

Table 2 The values of overlap integrals over ISTOs obtained in the molecular coordinate system (in a.u.)

n l m n′ l′ m′ p t θ ϕ Overlap integral [braceex∆f[braceex CPU (ms)

3 2 2 4.3 2 1 6 0.2 108 360 2.35433146098390E–02 16 1.3
4 3 2 3 2 2 28 0.5 36 90 1.31250973526034E–05 20 0.6
6 4 3 4.7 3 3 0.01 0.8 30 120 1.95914851453841E–06 12 7.1
6 5 4 5 4 3 100 0.9 30 120 3.22560055936252E–09 21 1.1
9 8 7 9 8 7 0.05 0.5 0 0 3.10284864728746E–02 18 7.4

13 11 10 13 11 10 3 0.5 40 45 8.94971276122572E–05 14 9.2
14 8 2 2 1 1 25 0.1 60 120 –3.44935857510066E–04 15 6.4
20 10 3 3 2 1 15 0.4 60 30 –1.91911299026405E–02 18 7.6
20 12 10 23 12 10 15 0.8 80 225 8.75180391158657E–11 18 11.8
30 9 2 5 4 2 1.3 0.5 180 60 3.80469836725469E–06 15 10.1
51 4 3 50 4 3 7 0.7 180 225 1.94567688548197E–11 17 5.1
60 3 2 60 3 2 4 0.1 30 45 6.47164982333689E–01 9 7.5


